Learning to Fuse 3D+2D Based Face Recognition at Both Feature and Decision Levels
نویسندگان
چکیده
2D intensity images and 3D shape models are both useful for face recognition, but in different ways. While algorithms have long been developed using 2D or 3D data, recently has seen work on combining both into multi-modal face biometrics to achieve higher performance. However, the fusion of the two modalities has mostly been at the decision level, based on scores obtained from independent 2D and 3D matchers. In this paper, we propose a systematic framework for fusing 2D and 3D face recognition at both feature and decision levels, by exploring synergies of the two modalities at these levels. The novelties are the following. First, we propose to use Local Binary Pattern (LBP) features to represent 3D faces and present a statistical learning procedure for feature selection and classifier learning. This leads to a matching engine for 3D face recognition. Second, we propose a statistical learning approach for fusing 2D and 3D based face recognition at both feature and decision levels. Experiments show that the fusion at both levels yields significantly better performance than fusion at the decision level.
منابع مشابه
Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کامل2D&3D-ComFusFace: 2D and 3D Face Recognition by Scalable Fusion of Common Features
In traditional 2D and 3D face recognition systems, different features are extracted from 2D and 3D face images, and then are fused to improve the recognition performance. The shortage of these methods is that they neglect the intrinsic complementary features between 2D and 3D data. In this paper, we investigate the possibility of extracting and scalable fusing common features from 2D intensity ...
متن کاملFace Recognition Using 2D and 3D Multimodal Local Features
Machine recognition of faces is very challenging because it is an interclass recognition problem and the variation in faces is very low compared to other biometrics. Global features have been extensively used for face recognition however they are sensitive to variations caused by expressions, illumination, pose, occlusions and makeup. We present a novel 3D local feature for automatic face recog...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملRobust Geometrically Invariant Features for 2 D Shape Matching and 3 D Face Recognition
Invariant features play a key role in object and pattern recognition studies. Features that are invariant to geometrical transformations offer succinct representations of underlying objects so that they can be reliably identified. In this dissertation, we introduce a family of novel invariant features based on Cartan’s theory of moving frames. We call these new features summation invariants. Co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005